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This paper is concerned with one-degree-of-freedom aeroelastic oscillations of a seesaw-
type structure in a steady wind #ow. Here it is assumed that strong wind conditions induce
nonlinear aeroelastic sti!ness forces that are of the same order of magnitude as the structural
sti!ness forces. As a model equation for the aeroelastic behaviour of the seesaw-type
structure, a strongly nonlinear self-excited oscillator is obtained. The bifurcation and the
stability of limit cycles for this equation are studied using a special perturbation method.
Both the case with linear structural sti!ness and the case with nonlinear structural sti!ness
are studied. For both cases is assumed a general cubic approximation to describe the
aerodynamic coe$cient. Conditions for the existence, the stability, and the bifurcation of
limit cycles are given.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In this paper the aeroelastic oscillations of a one-degree-of-freedom structure of seesaw-type
placed in a steady wind #ow with velocity ; is considered. A schematic sketch of this
seesaw-type oscillator is given in Figure 1. It consists of a rigid bar, holding a cylinder at the
right end. On the other end a counter weight is "xed, balancing the cylinder with respect to
a hinge axis through the middle of the bar. A torsional spring provides a restoring moment.
It is assumed that the cylinder has a uniform cross-section along its axis. If the cylinder has
a non-circular cross-section and is exposed to a steady wind #ow, perpendicular to the
cylinder's axis, self-excited so-called galloping oscillations may arise [1]. Haaker and van
der Burgh [2] derived an equation of motion for the seesaw-type oscillator with linear
structural sti!ness, valid for low #ow velocities. The wind forces then act as a perturbation
on the linear Hamiltonian system that models the unforced oscillations of the seesaw
structure. An actual construction of the seesaw-type oscillator was considered in reference
[3]. For higher #ow velocities, i.e., strong wind, large aerodynamic sti!ness forces appear
that, when included in the Hamiltonian system, give rise to a perturbed, strongly nonlinear
Hamiltonian system. In reference [4] a formula was derived for the calculation of the
amplitudes of periodic solutions for such a system. Based on this formula the number of
periodic solutions, their stability, and also their bifurcation can be studied. Unfortunately,
the exact evaluation of that formula is only possible for the simplest cases. For two cases,
corresponding to two di!erent symmetric cylinder cross-sections, results concerning the
oscillation amplitudes were presented. For one of these cases the results were compared
with actual wind tunnel measurements. Contrary to reference [4], here a general class of
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Schematic sketch of the seesaw-type oscillator.
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cylinder cross-sections is studied, not necessarily symmetrical. The class studied consists of
those cylinder cross-sections for which a cubic approximation of the aerodynamic
coe$cient curve is appropriate. For two cases a rigorous analytical proof for the existence
of a unique stable periodic oscillation is given, based on the monotonicity of certain integral
coe$cients. Furthermore, strong numerical evidence is given that the monotonicity
property also holds for the general case, leading to the conclusion that for this class of
cross-sections typically a unique stable periodic oscillation is found. This analysis extends
the result of Haaker and Oudheusden [4] to non-symmetric cross-sections. Next, the model
studied in references [3, 4] is extended to allow for nonlinear structural sti!ness in the
equation describing the unforced oscillations. Addition of these nonlinearities leads to new
behavior not observed for the case with linear structural sti!ness. Again considering the
same general class of cross-sections, one "nds that there may be two coexisting periodic
solutions, one stable and one unstable.

The model equation obtained is a perturbed nonlinear Hamiltonian system. The study of
limit cycles for this type of system is generally based on the study of "xed points of a certain
PoincareH map. Alternatively, one may study the zeros of the associated distance function,
often referred to as the PoincareH }Melnikov function. Doelman and Verhulst [5] applied
this method to study the bifurcations of certain strongly nonlinear self-excited oscillators.
VanHorssen andKooij [6] considered the bifurcation of limit cycles for a particular class of
quadratic systems with two centers. Iliev and Perko [7] considered the asymmetrically
perturbed Du$ng equation. These last authors rewrote the PoincareH }Melnikov function as
a sum of integral quotients, a method is adopted here. This paper is organized as follows.
Section 2 shows the derivation of the model equation for the aeroelastic response of the
seesaw-type oscillator. In section 3, the analysis is started by assuming the structural
sti!ness to be linear. The existence, the stability, and the bifurcation of limit cycles for
a general cubic approximation of aerodynamic coe$cient curves are considered. The
analysis for the case with nonlinear structural sti!ness is presented in section 4. For each
case phase portraits for a representative numerical example are presented. In section 5,
some conclusions will be given.

2. DERIVATION OF THE MODEL EQUATION

The result of Haaker and Burgh [2] and Haaker [8], in which the aeroelastic response of
the seesaw-type oscillator is derived, is summarized here. The wind forces are modelled
using a quasi-steady theory. The angle of rotation described by the bar holding the cylinder
is indicated by �, being positive in counter clockwise direction. The distance from the
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Figure 2. Quasi-steady modelling of seesaw galloping.
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cylinder's axis to the pivot O is denoted by R, see Figure 2. The aerodynamic moment
M exerted on the structure is modelled using the transversal component N of the
aerodynamic force exerted on the cylinder. A quasi-steady approach is used to "ndN, that
is, it is assumed that N in the dynamic situation is given by the force experienced in the
equivalent static situation [8]. ThenN is given byN"�

�
�ld;�

�
C

�
(�) [1], with � the density

of air, l the length of the cylinder, and d a typical measure for the cylinder cross-section (i.e.,
diameter for circular section, side-face for rectangular section). C

�
(�) is an aerodynamic

coe$cient curve that depends solely on the shape of the cylinder cross-section and the
orientation � toward the experienced #ow ;

�
, see Figure 2. This curve may be obtained

from static wind tunnel measurements. The orientation, or angle of attack �, is in the
dynamic situation approximately given by �"�!R�Q /;. Using the aerodynamic
coe$cient curve C

�
(�), the aerodynamic moment is now approximately given by

M (�)"�
�

�dlR;�C
�
(�). (1)

As a model equation one gets

I�G#c��Q #F(�)"�
�

�dlR;�C
�
(�) (2)

with

F (�)"k�#pJ
�
��#pJ

�
��. (3)

Here I denotes the structural moment of inertia, c�'0 the linear viscous damping
coe$cient,; the wind velocity, and F (�) the restoring structural sti!ness force where pJ

�
(0

is assumed.
Scaling time with �"��t where ���"k/I and introducing �"�dlR�/(2I), u";/(��R)

and 2��"c�/(��I) yields an equation of motion as follows:

�G#�#p
�
��#p

�
��"� (!2 � �Q #u�C

�
(�)). (4)

Here 0(��1 is a small constant which may be interpreted as a measure for the ratio of
displaced air mass to cylinder mass. Note that u is the non-dimensional wind velocity. The
assumption used throughout this paper is that C

�
(�) cubic, i.e.,

C
�
(�)"c

�
�#c

�
��#c

�
��

with c
�
(0 and c

�
*0.
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Substituting for � and C
�
(�), equation (4) becomes

�G#(1!c
�
u��) �#(p

�
!c

�
u��) ��#(p

�
!�u�c

�
) ��

"�u�!�
2�
u

#c
�� �Q #

c
�
u

�Q �!2c
�
��Q �!3c

�
���Q #

3c
�
u

��Q !
c
�
u�

�Q �� . (5)

Assuming a strong wind velocity u, i.e., �u�"O (1), one may introduce a new O(1) parameter

�"�u� and a new small parameter �J "�u"��� into equation (5) to obtain

�G#(1!c
�
�) �#(p

�
!c

�
�) ��#(p

�
!c

�
�) ��

"�J (!c
�
�Q !2 c

�
� �Q !3 c

�
���Q )#O (�J �). (6)

Rescaling tPs/�1!c
�
�, system (6) becomes

(1!c
�
�) �G#(1!c

�
�) �#(p

�
!c

�
�) ��#(p

�
!c

�
) � ��

"�J (!c
�
�1!c

�
��Q !2 c

�
�1!c

�
� � �Q !3 c

�
�1!c

�
� ���Q )#O (�J �). (7)

Dividing both sides by (1!c
�
�)'0, one gets

�G#�#�
��

��#�
��

��"�J (�
��

�Q #�
��

� �Q #�
��

���Q )#O (�J �) (8)

with

�
��

"!

c
�

�1!c
�
�
'0, �

��
"!3

c
�

�1!c
�
�
)0,

�
��

"!2
c
�

�1!c
�
�
, �

��
"

(p
�
!c

�
�)

(1!c
�
�)

.

�
��

"

(p
�
!c

�
�)

(1!c
�
�)

)0,

This is a perturbed Hamiltonian system with Hamiltonian

H(�, �Q )"�
�

�Q �#�
�

��#�
�

�
��

��#�
�

�
��

��. (9)

3. ANALYSIS OF THE MODEL EQUATION FOR LINEAR STRUCTURAL STIFFNESS

This section is concerned with the existence, the bifurcation, and the stability of limit
cycles for the linear seesaw oscillator, i.e., equation (4) with p

�
"p

�
"0. The analysis is split

in three parts.

3.1. CUBIC SYMMETRICAL C
�
(�) CASE

In this subsection the cylinder's cross-section is assumed to be symmetrical and the
symmetry axis is assumed to coincide with the arm holding the cylinder, implying c

�
"0.
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System (8) can be written as follows:

�G#�#�J
��

��"�J (�
��

�Q #�
��

���Q )#O (�J �), (10)

where �J
��

"![c
�
�/(1!c

�
�)](0.

Rescaling �Pc�M , after neglecting the &&bar'', and choosing c"1/�!�J
��
, equation (10)

becomes

�G#�!��"�J ���� �Q !
�
��

�J
��

���Q �#O(�J �). (11)

This is a perturbed Hamiltonian system with Hamiltonian

H (�, �Q )"�
�

�Q �#�
�

��!�
�

��. (12)

Letting �"�
�
and �Q "�

�
one gets

�Q
�
"�

�
,

�Q
�
"!�

�
#��

�
#�J ������!

�
��

�J
��

��
�
�
��#O (�J �).

(13)

The critical points of the unperturbed system are (0, 0) and ($1, 0). Note that (0, 0) is
a center point and ($1, 0) are saddle points. One observes that for each hwith 0(h(h

���
,

the equation H(�, �Q )"h represents a periodic orbit 	
�
surrounding the center point (0, 0).

The periodic orbits are bounded by two heteroclinic orbits, connecting the two saddle
points, obtained from H(�, �Q )"h

���
"�

�
. In order to determine the number of limit cycles

of equation (13) one can use Pontryagin's method for perturbed Hamiltonian systems,
described, e.g., in Theorem 78 of Andronov et al. [9]. This ("rst order) perturbation theorem
shows that precisely one structurally stable limit cycle is bifurcated out of the periodic orbit
	(h

�
) of unperturbed system (13) if the PoincareH }Melnikov function I(h), given by

I(h)"��� �����Q !
�
��

�J
��

���Q � d�, (14)

has a simple zero at h"h
�
, that is, I (h

�
)"0 and (dI/dh)(h

�
)(0. One can write the

PoincareH }Melnikov function using an integral quotient as follows:

I(h)"4 ����
I
�
(h)!

�
��

�J
��

I
�
(h)� ,

"4�
��
I
�
(h) �1!

�
��

�
��

�J
��

I
�
(h)

I
�
(h) � ,

"4�
��
I
�
(h) �1!

�
��

�
��

�J
��

Q
��

(h)� ,

where I
�
(h)"
����

�
�Q d�, I

�
(h)"
����

�
���Q d�, �Q "�G(�) with G(�)"2h!��#�

�
��, Q

��
(h)"

I
�
(h)/I

�
(h), and the upper boundary of the integrals, �(h), is the smallest positive zero ofG(�).

In Appendix A it is shown that Q
��

(h) is a strictly increasing function in h. The function
I(h) has at most one zero depending on the sign of �

��
/(�

��
�J
��
). This means that there is at

most one limit cycle [10]. Now consider the existence of this limit cycle. Notice that
Q

��
(0)"0, Q

��
(h

���
)"�

�
, and I(h)"0 if and only if Q

��
(h)"(�

��
�J
��
)/�

��
"c

�
�/

(3c
�
�!3). Then one can conclude that the limit cycle exists if and only if
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0(c
�
�/(3c

�
�!3)(�

�
, i.e., �(!3/(2c

�
) and a heteroclinic bifurcation occurs for

�"!3/(2c
�
). The limit cycle is always stable as dI/dh(h)(0.

Numerical results for some special values of the parameters are shown in Figure 3.
Assuming �"1)33�10	� one "nds the following results. For u"15 one "nds a stable limit
cycle. For u"19)4, the limit cycle disappears in a heteroclinic bifurcation. For u"23, the
system is globally unstable and any initial disturbance leads to an unbounded solution.

3.2. QUADRATIC C
�
(�) CASE

In this subsection the assumption is made that the cylinder's cross-section is
asymmetrical such that a quadratic C

�
(�) can be used. Assuming c

�
(0 and c

�
O0, system

(8) becomes

�G#�#�J
��

��"�J (�
��

�Q #�
��

� �Q )#O(�J �), (15)

where �J
��

"!c
�
�/(1!c

�
�).

Rescaling �Pc�M , after neglecting the &&bar'', and choosing c"!1/�J
��

, equation (15)
becomes

�G#�!��"�J ���� �Q !
�
��

�J
��

��Q �#O (�J �). (16)

This is a perturbed Hamiltonian system with Hamiltonian

H (�, �Q )"�
�

�Q �#�
�

��!�
�

��. (17)

Letting �"�
�
and �Q "�

�
one gets

�Q
�
"�

�
,

�Q
�
"!�

�
#��

�
#�J ����

�
�
!

�
��

�J
��

�
�
�
��#O (�J �).

(18)

The critical points of the unperturbed system are (0, 0) and (1, 0) . Note that (0, 0) is a center
point and (1, 0) is a saddle point. Observe that for each h with 0(h(h

���
, the equation

H(�, �Q )"h represents a periodic orbit 	
�
surrounding the center point (0, 0). The periodic

orbits are bounded by a homoclinic orbit, connecting the saddle point to itself, obtained
from H(�, �Q )"h

���
"�



. Again one can use Pontryagin's method to determine the number
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and the stability of limit cycles for equation (18). The PoincareH }Melnikov function is
given by

I (h)"��� �����Q !
�
��

�J
��

��Q � d�. (19)

The PoincareH }Melnikov function can be written using an integral quotient as follows:

I(h)"2�
��
I
�
(h) �1!

�
��

�
��

�J
��

Q
��

(h)� , (20)

where I
�
(h)"
����������

�Q d�, I
�
(h)"
����������

��Q d�, �Q "�G (�) with G(�)"(2h!��#�
�
��),

Q
��

(h)"I
�
(h)/I

�
(h), and the boundaries of the integrals, �

�
(h) and �

�
(h), are the negative

root and the smallest positive root of G(�), respectively.
In Appendix A it is shown that Q

��
(h) is a strictly increasing function in h. The function

I(h) has at most one zero depending on the sign of �
��
/(�

��
�J
��

). This means that the system
has at most one limit cycle. Now consider the existence of this limit cycle. Notice that
Q

��
(0)"0, Q

��
(h

���
)"�

�
, and I(h)"0 if and only if Q

��
(h)"(�

��
�J
��
)/�

��
"c

�
�/

(2c
�
�!2). Then one can conclude that the limit cycle exists if and only if 0(c

�
�/

(2c
�
�!2)(�

�
, i.e., �(!2/(5c

�
) and a homoclinic bifurcation occurs for �"!2/(5c

�
).

The limit cycle is always stable as (dI/dh) (h)(0. Numerical results for some special values
of the parameters are given in Figure 4. Assuming �"1)33�10	� one "nds the following
results. For u"8)7 there is a stable limit cycle. For u"10 the limit cycle disappears in
a homoclinic bifurcation. For u"10)3 the system is globally unstable and any initial
disturbance leads to an unbounded solution.

3.3. GENERAL CUBIC C
�
(�) CASE

Consider the general cubic approximation for C
�
(�) with c

�
(0 and c

�
'0. Rescaling

�Pc�M , neglecting the &&bar'', and choosing c"!1/�J
��

, system (8) becomes

�G#�!��#� ��"�J �
��

(�Q #� � �Q #	 ���Q )#O(�J �), (21)

where �"�J
��
/�J �

��
(0, �"!�

��
/(�

��
�J
��
)(0, and 	"�

��
/(�

��
�J �
��
)(0.
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This is a perturbed Hamiltonian system with Hamiltonian

H (�, �Q , �)"�
�

�Q �#�
�

��!�
�

��#�
�
� ��. (22)

Letting �"�
�
and �Q "�

�
, system (21) becomes

�Q
�
"�

�
,

�Q
�
"!�

�
#��

�
!� ��

�
#�J �

��
(�

�
#� �

�
�
�
#	 ��

�
�
�
)#O(�J �).

(23)

The critical points of the unperturbed system are (0, 0) and ((1$�1!4 �)/(2 �), 0). Note

that (0, 0) is a center point and ((1$�1!4 �)/(2 �), 0) are saddle points. One observes that
for each h with 0(h(h

���
, the equation H (�, �Q )"h represents a periodic orbit 	

�
,

surrounding the center point (0, 0). The periodic orbits are bounded by a homoclinic orbit,
connecting the saddle point closest to the center point to itself. The homoclinic orbit is

obtained from H(�, �Q , �)"h
���

" �
�


[(1#�1!4 �)�(6 �!1!�1!4 �)]/��. The
PoincareH }Melnikov function is given by

I (h, �)"�
�� ��� (�Q #���Q #	���Q ) d�. (24)

The PoincareH }Melnikov function is written using an integral quotient as follows:

I(h, �)"�
��

(I
�
(h, �)#�I

�
(h, �)#	 I

�
(h, �)) (25)

"�
��
I
�
(h, �) (1#�Q

��
(h, �)#	Q

��
(h, �)), (26)

where

Q
��

(h, �)"
I
�
(h, �)

I
�
(h, �)

, Q
��

(h, �)"
I
�
(h, �)

I
�
(h, �)

, I
�
(h, �)"�

�����

�����
�Q d�, I

�
(h, �)"�

�����

�� ���
��Q d�,

I
�
(h, �)"�

�����

�� ���
���Q d�, �Q "�G(�, �) with G(�, �)"(2h!��#�

�
��!�/2��),

and the boundaries of the integrals, �
�
(h) and �

�
(h), are the negative and the positive roots of

G(�, �) closest to the center point, respectively.
Numerically, Q

��
(h, �) and Q

��
(h, �) have been calculated for several values of �. These

numerical results indicate that (dQ
��
/dh)(h, �)'0 and (dQ

��
/dh)(h, �)'0, see Figure 5. So,

based on these numerical results one can conjecture the monotonicity of Q
��

(h, �) and
Q

��
(h, �). Following from the signs of parameters � and 	 (both negative), one "nds that

equation (26) has at most one zero. This means that the system has at most one limit cycle.
This limit cycle exists if and only if I (h

���
, �)(0. If h"h

�
is a zero of I (h, �), one gets

(dI/dh)(h
�
, �)"2�

��
I
�
(h

�
, �) (� (dQ

��
/dh)(h

�
, �)#	 dQ

��
/dh (h

�
, �))(0. So one can

conclude that the limit cycle is always stable.
Numerical results for some special values of the parameters are given in Figure 6.

Assuming �"1)33�10	� one "nds the following results. For u"8)7 one obtains a stable
limit cycle. For u"15)4 the limit cycle disappears in a homoclinic bifurcation. For u"17)3
the system is globally unstable and any initial disturbance leads to an unbounded solution.
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4. ANALYSISOFTHEMODELEQUATIONFORNONLINEARSTRUCTURALSTIFFNESS

This section is concerned with the existence, the stability, and the bifurcation of limit
cycles for the seesaw-type oscillator with nonlinear sti!ness forces, given by equation (8).

Rescaling equation (8) with the transformation �Pc�M , neglecting the &&bar'', and choosing
c"!1/�

��
with �

��
O0, one gets

�G#�!��#���"�J �
��

(�Q #���Q #	���Q )#O (�J �), (27)

where

�"

�
��

��
��

(0, �"

!�
��

�
��

�
��

and 	"

�
��

�
��

��
��

(0.
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This is a perturbed Hamiltonian system with Hamiltonian

H(�, �Q , �)"�
�

�Q �#�
�

��!�
�

��#�
�

���. (28)

Note that this equation is the same equation as found for the oscillator with linear sti!ness
for the cubic non-symmetrical case, equation (21). The only di!erence is that the sign of the
parameter � may now be positive.

The existence of bifurcations that create or destroy periodic solutions is considered. First,
the existence of homoclinic bifurcations depending on the parameters �, �, and 	 is studied.
Recall that a homoclinic bifurcation occurs if the PoincareH }Melnikov function I (h, �) is zero
for h"h

���
. Using equation (25) one gets the equation

I
�
(h

���
, �)#�I

�
(h

���
, �)#	I

�
(h

���
, �)"0. (29)

Setting 	 as a function of the parameters � and � one obtains

	(�, �)"!

I
�
(h

���
, �)

I
�
(h

���
, �)

�!

I
�
(h

���
, �)

I
�
(h

���
, �)

, (30)

where both of I
�
(h

���
, �)/I

�
(h

���
, �) and I

�
(h

���
, �)/I

�
(h

���
, �) are positive.

For a "xed value of �, say �
�
, one obtains a line in the (�, 	) parameter plane on which the

homoclinic bifurcation occurs, see Figure 7,

	(�
�
, �)"!

I
�
(h

���
, �

�
)

I
�
(h

���
, �

�
)
�!

I
�
(h

���
, �

�
)

I
�
(h

���
, �

�
)
. (31)

Another type of bifurcation may occur if the PoincareH }Melnikov function has multiple
roots. In particular, a saddle-node bifurcation of periodic solutions appears if both I (h, �)
and (I/h)(h, �) are zero and (�I/h�) (h, �)O0 for some (h, �)"(h

�
, �

�
) , i.e., if

I
�
(h, �)#�I

�
(h, �)#	I

�
(h, �)"0, (32)

I
�

h
(h, �)#�

I
�

h
(h, �)#	

I
�

h
(h, �)"0, (33)

for some (h, �)"(h
�
, �

�
). Solving equations (32) and (33) for � and 	 for a "xed value of �,

say �
�
, one obtains a curve in the (�, 	) parameter plane on which the saddle-node

bifurcation occurs (write J
�
"I

�
/h),

�
� (h, �

�
)

	 (h, �
�
)�"

!1

I
�
(h, �

�
)J

�
(h, �

�
)!J

�
(h, �

�
) I

�
(h, �

�
) �

J
�
(h, �

�
) !I

�
(h, �

�
)

!J
�
(h, �

�
) I

�
(h, �

�
) � �

I
�
(h, �

�
)

J
�
(h, �

�
)� .

(34)

This curve is parameterized by h. It terminates on the homoclinic bifurcation line at the
point (�

�
, 	

�
)"(� (h

���
, �

�
), 	 (h

���
, �

�
)). Note that (�

�
, 	

�
) may be viewed as an &&organizing

center'' in the parameter plane in the sense that all di!erent dynamical behavior can be
found in a neighborhood of this point. One then obtains the bifurcation diagram as shown
in Figure 7. The bifurcation curves divide the (�, 	) parameter plane into three regions,
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Figure 7. Bifurcation diagram in the (�, 	) parameter plane. SN, saddle nod bifurcation; HB, homoclinic
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that is,

� A
�
is the region where one has no limit cycle,

� A
�
is the region where one has only one limit cycle,

� A
�
is the region where one has two limit cycles.

The number of limit cycles in each region is determined from the number of roots of the
PoincareH }Melnikov function in that region, as shown in Figure 8. The case �(0 is
identical to the situation in section 3.3: below the homoclinic bifurcation line one has
a stable limit cycle, above this line no limit cycle is found (see Figure 6 for some
phase-portraits for this case).

For �'0 the situation is quite di!erent. Starting on the line 	"0, one "nds readily that
I(h, �) is positive for h3 (0, h

���
] and no limit cycle is found. On decreasing 	 from zero for

positive but "xed �, the PoincareH }Melnikov function remains positive for h3 (0, h
���

] until
either the homoclinic or saddle-node bifurcation curve is reached. In the regionA

�
therefore

no limit cycles are found.
If � is chosen such that on decreasing 	 the homoclinic curve is reached "rst, then

a homoclinic bifurcation occurs in which a stable limit cycle is born. The stability of this
limit cycle, � (h

�
), follows from (I/h)(h

�
, �

�
)(0. In the region A

�
, therefore one has one

stable limit cycle.
If � is chosen such that on decreasing 	 the saddle-node curve is reached "rst, two limit

cycles are created in a saddle-node bifurcation. The smaller limit cycle being stable and the
larger one being unstable. These limit cycles persist in the region A

�
where the

PoincareH }Melnikov function has two zeroes. Finally, on reaching the homoclinic curve
from region A

�
, the unstable limit cycle disappears in a homoclinic bifurcation and one

enters region A
�
.

In the three-dimensional (�, �, 	) parameter space, equation (29) de"nes a surface on
which the homoclinic bifurcations occur. Similarly equations (32) and (33) de"ne a surface
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on which the saddle-node bifurcations occur. The intersection of these surfaces de"nes
a curve (�

�
(�), 	

�
(�)) consisting of all the points where the saddle-node bifurcation curves

end on the homoclinic bifurcation lines. Figure 9(a) shows, for some "xed values of �, the
projection of the homoclinic bifurcation lines on the (�, 	) bifurcation plane. Figure 9(b)
shows, for some "xed values of �, the projection of the saddle-node bifurcation curves. Also
shown is the projection of the curve consisting of termination points (�

�
(�), 	

�
(�)).

Now some numerical results are considered for special values of the parameters �, �, and
	. Let �"400, �"!1 and 	 !430, !487, and !530. Then one obtains Figure 10.
E!ectively one moves from region A

�
, through A

�
to A

�
, see Figure 7. For 	"!430 the

system is globally unstable and any initial disturbance leads to an unbounded solution. For
	"!487 one has two limit cycles, the small limit cycle is stable and the big one is unstable.
For 	"!530 only one stable limit cycle is left.

Finally, the period of oscillation of the limit cycles is considered. Suppose I(h
�
, �

�
)"0,

then the limit cycle is to O (�) approximated by the unperturbed orbit � (h
�
, �

�
). The period of

the limit cycle is then approximated to O(�) by the period ¹�������
of � (h

�
, �

�
), given by

¹�������
"��������

d�
�Q

d�"�
�����

�� ���

2d�

�2h!��#�
�

��!�
�
� ��

d�, (35)

where the boundaries of the integral, �
�
(h

�
) and �

�
(h

�
), are the intersection points of

�(h
�
, �

�
) with the �-axis. These points follow as the zeroes of (2h

�
!��#�

�
�!�

�
�
�
��),

inside the homoclinic loop. Assuming again �"400 and �"!1, the period of the limit
cycles is considered when 	 is varied from !550 to !480, see Figure 11. Decreasing 	 from
!480 one "rst "nds the saddle-node bifurcation for 	"	

�	
"!485)016 in which the two
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limit cycles are born. The period of the (shrinking) stable limit cycle decreases when 	 is
further decreased. The period of the (expanding) unstable limit cycle increases when 	 is
further decreased. The period of the unstable limit cycle grows to in"nity when it
approaches the homoclinic loop �(h

���
). Then, in the homoclinic bifurcation, for

	"	
�
�

"!523)377, the unstable limit cycle disappears.

5. CONCLUSIONS

The aeroelastic response of a single-degree-of-freedom seesaw-type oscillator under
strong wind conditions has been considered in this paper. The model equation describing
the aeroelastic oscillations is adapted from references [2, 8] and reads

�G#�#p
�
��#p

�
��"�(!2��Q #u�C

�
(�)) (36)
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with C
�
(�)"c

�
�#c

�
��#c

�
��. In this equation � denotes the angle of rotation of the

seesaw structure around the hinge axis. It is assumed that p
�
(0, c

�
(0, and c

�
*0.

Furthermore, assuming a strong wind velocity u, introducing a new parameter �"�u�"

O(1) and a new small parameter �J "�u"��� to equation (36), one gets a strongly
nonlinear system as follows:

�G#�#�
��

��#�
��

��"�J (�
��

�Q #�
��

� �Q #�
��

���Q )#O(�J �) , (37)

where �
��

and �
��

depend on both structural and aerodynamic force coe$cients �
��
, �

��
,

and �
��

depend on aerodynamic force coe$cients and on �. Consider "rst the oscillator
with linear structural sti!ness, i.e., equation (37) with p

�
"p

�
"0, for three choices of the

aerodynamic parameters.
(1) Case c

�
"0. Now the equation reads

�G#�#�J
��

��"�J (�
��

�Q #�
��

���Q )#O(�J �). (38)

It is found that a stable limit cycle exists if and only if �(3/(!2c
�
). For

�"3/(!2c
�
) a heteroclinic bifurcation destroys the limit cycle, and for �'3/!2c

�
the system is globally unstable. That is, any initial disturbance leads to unbounded
solutions.

(2) Case c
�
"0. Now the equation reads

�G#�#�J
��

��"�J (�
��

�Q #�
��

� �Q )#O (�J �). (39)

A stable limit cycle exists if and only if �(2/(!5c
�
). For �"2/(!5c

�
) a

homoclinic bifurcation destroys the limit cycle, and for �'2/(!5c
�
) the system is

globally unstable.
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(3) Case c
�
O0, c

�
O0. Now the equation reads

�G#�!��#� ��"�J �
��

(�Q #� � �Q #	 ���Q )#O (�J �), (40)

where all of the parameters �, �, and 	 are negative.
Based on the numerical analysis one "nds at most one limit cycle, which, if it exists, is
stable.

Secondly, the seesaw-type oscillator with nonlinear structural sti!ness has been
considered. Again one obtains equation (40) but now � may be positive. One "nds that,
di!erent from the previous cases, two limit cycles may co-exist. These two limit cycles are
shown to be born in a saddle-node bifurcation of periodic solutions. The smaller limit cycle
is stable and the larger one is unstable. One obtains regions in the (�, 	) parameter plane
where zero, one, or two limit cycles are found. On the curves separating these regions one
"nds homoclinic bifurcations or the mentioned saddle-node bifurcations. In the region with
no limit cycle the system is globally unstable and any initial disturbance leads to unbounded
solutions. Finally, the period of oscillation of the two co-existing limit cycles has been
considered for a special case.
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APPENDIX A

In this Appendix the monotonicity proofs of the integral quotients Q
��

(h) and Q
��

(h) of
sections 3.1 and 3.2, respectively are considered.

A.1. PROOF OF THE MONOTONICITY OF Q
��

Consider the monotonicity of Q
��

(h). From section 3.1 one knows that I
�
(h)"
����

�
R(�)

d�, I
�
(h)"
����

�
��R(�) d�, and Q

��
(h)"I

�
(h)/I

�
(h) with R(�)"�Q "�2h!��#�

�
�� and

the upper boundary of the integrals, �(h), is the smallest positive root ofR(�) . Integrating by
parts in I

�
(h) one obtains

I
�
(h)"�

����

�

(��!��)

R(�)
d�. (A.1)

Also

I
�
(h)"�

����

�

(2h!��#�
�
��)

R (�)
d�. (A.2)

Similarly, one gets

3I
�
(h)"�

����

�

(��!�
)
R(�)

d�, (A.3)

and also

I
�
(h)"�

����

�

(2h��!��#�
�
�
)

R (�)
d�. (A.4)

Write I
�
(h)"
����

�
��R(�) d� and J

�
(h)"(dI

�
/dh)(h)"
����

�
(��/R(�)) d�, i"0,2, 6.

For simplicity I
�
, J

�
, and Q

��
will be written instead of I

�
(h), J

�
(h), and Q

��
(h)

respectively. From their de"nition it follows that I
�
, I

�
, J

�
, and J

�
are positive for h'0.

Also, since � (h))1, one knows that J
�
'J

�
.

Using equations (A.1)} (A.4), I
�
and I

�
can be expressed in terms of J

�
as follows:

I
�
"J

�
!J

�
, (A.5)

I
�
"2hJ

�
!J

�
#�

�
J
�
, (A.6)

3I
�
"J

�
!J



, (A.7)

I
�
"2hJ

�
!J

�
#�

�
J


. (A.8)

Combining equations (A.5)} (A.6) one gets J
�
"�

�
(J

�
!hJ

�
). Using equations (A.5)}(A.8)

one obtains

15I
�
"20hJ

�
!5J

�
, (A.9)

15I
�
"12hJ

�
!3J

�
. (A.10)
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Because of J
�
'0 one "nds (J

�
!hJ

�
)'0 and from equation (A.10) one obtains

(4hJ
�
!J

�
)'0. A straightforward calculation yields

15(J
�
I
�
!J

�
I
�
)"J

�
(20hJ

�
!5J

�
)!J

�
(12hJ

�
!3J

�
)

"J
�
(4hJ

�
!J

�
)#4(J

�
!J

�
) (J

�
!hJ

�
)

'0. (A.11)

Consider again the derivative of the integral quotient, i.e.,

dQ
��

dh
"

(J
�
I
�
!J

�
I
�
)

I�
�

. (A.12)

Then from inequality (51) one obtains immediately that dQ
��
/dh'0. This implies that the

integral quotient Q
��

is a strictly increasing function in h.

A.2. PROOF OF THE MONOTONICITY OF Q
��

Consider now the monotonicity of Q
��

(h). From section 3.2 one gets that
I
�
(h)"
����������

R(�) d�, I
�
(h)"
����������

�R(�) d�, and Q
��

(h)"I
�
(h)/I

�
(h) with R(�)"�Q "

�2h!��#2/3�� and the boundaries of the integrals, �
�
(h) and �

�
(h) , are the negative root

and the smallest positive root of R(�), respectively. Integrating by parts in I
�
(h) one obtains

I
�
(h)"�

�����

�����

(��!��)
R(�)

d�. (A.13)

Also

I
�
(h)"�

�����

�����

(2h!��#�
�
��)

R(�)
d�. (A.14)

Similarly, one gets

2I
�
(h)"�

�����

�����

(��!��)
R (�)

d�, (A.15)

and also

I
�
(h)"�

�����

�����

(2h�!��#�
�

��)
R (�)

d�. (A.16)

Again one can write I
�
(h)"
������� ���

��R(�)d� and J
�
(h)"dI

�
/dh(h)"
������� ���

��/R (�)d�,
i"0,2, 4.

Using equations (A.13)} (A.16) one can express I
�
and I

�
in terms of J

�
, as follows:

I
�
"J

�
!J

�
, (A.17)

I
�
"2hJ

�
!J

�
#�

�
J
�
, (A.18)
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2I
�
"J

�
!J

�
, (A.19)

I
�
"2hJ

�
!J

�
#�

�
J
�
. (A.20)

Combining equations (A.17) and (A.18) one obtains J
�
"


�
(J

�
!hJ

�
). Also, applying

a theorem of Legendre [11], on egets J
�
"J

�
. Using equations (A.17)} (A.20) one obtains

5I
�
"6hJ

�
!J

�
, (A.21)

7I
�
"6hJ

�
!J

�
. (A.22)

It follows from their de"nition that I
�
, I

�
, and J

�
are positive for h'0. Also, since

�
�
(h)(0 and �

�
(h)'0, one knows that J

�
!J

�
'0. As J

�
'0 also J

�
!hJ

�
'0. Finally,

from equation (A.21) one gets 6hJ
�
!J

�
'0.

A straightforward calculation now yields

35(J
�
I
�
!J

�
I
�
)"J

�
(42hJ

�
!7J

�
)#J

�
(6(5h!1) J

�
#6hJ

�
)

"(12hJ
�
J
�
!7J�

�
)#(6J

�
J
�
!6hJ�

�
)

"(6hJ
�
!J

�
) J

�
#6(J

�
!J

�
) (J

�
!hJ

�
)

'0. (A.23)

Consider again the derivative of the integral quotient, i.e.,

dQ
��

dh
"

(J
�
I
�
!J

�
I
�
)

I�
�

. (A.24)

Then from inequality (A.23) one obtains immediately that (dQ
��
/dh)'0. This implies

that the integral quotient Q
��

is a strictly increasing function in h.
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